30 research outputs found

    TAP: Time-Aware Provenance for Distributed Systems

    Get PDF
    In this paper, we explore the use of provenance for analyzing execution dynamics in distributed systems. We argue that provenance could have significant practical benefits for system administrators, e.g., for reasoning about changes in a system’s state, diagnosing protocol misconfigurations, detecting intrusions, and pinpointing performance bottlenecks. However, to realize this vision, we must revisit several aspects of provenance management. As a first step, we present time-aware provenance (TAP), an enhanced provenance model that explicitly represents time, distributed state, and state changes. We outline our research agenda towards developing novel query processing, languages, and optimization techniques that can be used to efficiently and securely query time-aware provenance, even in the presence of transient state or untrusted nodes

    Secure Network Provenance

    Get PDF
    This paper introduces secure network provenance (SNP), a novel technique that enables networked systems to explain to their operators why they are in a certain state – e.g., why a suspicious routing table entry is present on a certain router, or where a given cache entry originated. SNP provides network forensics capabilities by permitting operators to track down faulty or misbehaving nodes, and to assess the damage such nodes may have caused to the rest of the system. SNP is designed for adversarial settings and is robust to manipulation; its tamper-evident properties ensure that operators can detect when compromised nodes lie or falsely implicate correct nodes. We also present the design of SNooPy, a general-purpose SNP system. To demonstrate that SNooPy is practical, we apply it to three example applications: the Quagga BGP daemon, a declarative implementation of Chord, and Hadoop MapReduce. Our results indicate that SNooPy can efficiently explain state in an adversarial setting, that it can be applied with minimal effort, and that its costs are low enough to be practical

    Robust Respiration Sensing Based on Wi-Fi Beamforming

    Get PDF
    Currently, the robustness of most Wi-Fi sensing systems is very limited due to that the target’s reflection signal is quite weak and can be easily submerged by the ambient noise. To address this issue, we take advantage of the fact that Wi-Fi devices are commonly equipped with multiple antennas and introduce the beamforming technology to enhance the reflected signal as well as reduce the time-varying noise. We adopt the dynamic signal energy ratio for sub-carrier selection to solve the location dependency problem, based on which a robust respiration sensing system is designed and implemented. Experimental results show that when the distance between the target and the transceiver is 7m,the mean absolute error of the respiration sensing system is less than0.729bpm and the corresponding accuracy reaches 94.79%, which out performs the baseline methods

    NetTrails: A Declarative Platform for Maintaining and Querying Provenance in Distributed Systems

    Get PDF
    We demonstrate NetTrails, a declarative platform for maintaining and interactively querying network provenance in a distributed system. Network provenance describes the history and derivations of network state that result from the execution of a distributed protocol. It has broad applicability in the management, diagnosis, and security analysis of networks. Our demonstration shows the use of NetTrails for maintaining and querying network provenance in a variety of distributed settings, ranging from declarative networks to unmodified legacy distributed systems. We conclude our demonstration with a discussion of our ongoing research on enhancing the query language and security guarantees

    Global research trends of the application of artificial intelligence in bladder cancer since the 21st century: a bibliometric analysis

    Get PDF
    IntroductionSince the significant breakthroughs in artificial intelligence (AI) algorithms, the application of AI in bladder cancer has rapidly expanded. AI can be used in all aspects of the bladder cancer field, including diagnosis, treatment and prognosis prediction. Nowadays, these technologies have an excellent medical auxiliary effect and are in explosive development, which has aroused the intense interest of researchers. This study will provide an in-depth analysis using bibliometric analysis to explore the trends in this field.MethodDocuments regarding the application of AI in bladder cancer from 2000 to 2022 were searched and extracted from the Web of Science Core Collection. These publications were analyzed by bibliometric analysis software (CiteSpace, Vosviewer) to visualize the relationship between countries/regions, institutions, journals, authors, references, keywords.ResultsWe analyzed a total of 2368 publications. Since 2016, the number of publications in the field of AI in bladder cancer has increased rapidly and reached a breathtaking annual growth rate of 43.98% in 2019. The U.S. has the largest research scale, the highest study level and the most significant financial support. The University of North Carolina is the institution with the highest level of research. EUROPEAN UROLOGY is the most influential journal with an impact factor of 24.267 and a total citation of 11,848. Wiklund P. has the highest number of publications, and Menon M. has the highest number of total citations. We also find hot research topics within the area through references and keywords analysis, which include two main parts: AI models for the diagnosis and prediction of bladder cancer and novel robotic-assisted surgery for bladder cancer radicalization and urinary diversion.ConclusionAI application in bladder cancer is widely studied worldwide and has shown an explosive growth trend since the 21st century. AI-based diagnostic and predictive models will be the next protagonists in this field. Meanwhile, the robot-assisted surgery is still a hot topic and it is worth exploring the application of AI in it. The advancement and application of algorithms will be a massive driving force in this field

    Recent Advances in Declarative Networking

    Get PDF
    Declarative networking is a programming methodology that enables developers to concisely specify network protocols and services, and directly compile these specifications into a dataflow framework for execution. This paper describes recent advances in declarative networking, tracing its evolution from a rapid prototyping framework towards a platform that serves as an important bridge connecting formal theories for reasoning about protocol correctness and actual implementations. In particular, the paper focuses on the use of declarative networking for addressing four main challenges in the distributed systems development cycle: the generation of safe routing implementations, debugging, security and privacy, and optimizing distributed systems

    AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo

    Get PDF
    Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/Nneu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (≥24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells

    Explore Long-Range Context Features for Speaker Verification

    No full text
    Multi-scale context information, especially long-range dependency, has shown to be beneficial for speaker verification (SV) tasks. In this paper, we propose three methods to systematically explore long-range context SV feature extraction based on ResNet and analyze their complementarity. Firstly, the Hierarchical-split block (HS-block) is introduced to enlarge the receptive fields (RFs) and extract long-range context information over the feature maps of a single layer, where the multi-channel feature maps are split into multiple groups and then stacked together. Then, by analyzing the contribution of each location of the convolution kernel to SV, we find the traditional convolution with a square kernel is not effective for long-range feature extraction. Therefore, we propose cross convolution kernel (cross-conv), which replaces the original 3 × 3 convolution kernel with a 1 × 5 and 5 × 1 convolution kernel. Cross-conv further enlarges the RFs with the same FLOPs and parameters. Finally, the Depthwise Separable Self-Attention (DSSA) module uses an explicit sparse attention strategy to capture effective long-range dependencies globally in each channel. Experiments are conducted on the VoxCeleb and CnCeleb to verify the effectiveness and robustness of the proposed system. Experimental results show that the combination of HS-block, cross-conv, and DSSA module achieves better performance than any single method, which demonstrates the complementarity of these three methods
    corecore